यदि दीर्घवृत्त $\frac{x^{2}}{27}+\frac{y^{2}}{3}=1$ के एक बिंदु पर खींची गई स्पर्श रेखा, निर्देशांक अक्षों को $A$ तथा $B$ पर मिलती है तथा $O$ मूल बिंदु है, तो त्रिभुज $OAB$ का न्यूनतम क्षेत्रफल (वर्ग इकाइयों में) है

  • [JEE MAIN 2016]
  • A

    $3\sqrt 3$

  • B

    $\frac {9}{2}$

  • C

    $9$

  • D

    $\frac {9}{\sqrt 3}$

Similar Questions

माना दीर्घवृत्त $\frac{ x ^2}{2}+\frac{ y ^2}{4}=1$ के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $R (\sqrt{2}, 2 \sqrt{2}-2)$ पर मिलती हैं। यदि दार्घवृत्त के ॠणात्मक दीर्घ अक्ष पर नाभि $S$ है, तो $SP ^2+ SQ ^2$ बराबर है

  • [JEE MAIN 2022]

माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________. 

  • [JEE MAIN 2023]

एक $12$ सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $P$ का बिंदुपथ ज्ञात कीजिए जो $x-$ अक्ष के संपर्क वाले सिरे से $3$ सेमी दूर है।

दीर्घवृत्त $25{x^2} + 16{y^2} - 150x - 175 = 0$ की उत्केन्द्रता है

दीर्घवृत्तों $\mathrm{E}_{\mathrm{k}}: \mathrm{kx}^2+\mathrm{k}^2 \mathrm{y}^2=1, \mathrm{k}=1,2, \ldots ., 20$ का विचार कीजिए। माना $C_k$ वह वृत्त है, जो दीर्घवृत्त $E_k$ के अन्त्य बिंदुओं (एक लघु अक्ष पर तथा दूसरा दीर्घ अक्ष पर) को मिलाने वाली चार जीवाओं को स्पर्श करता है। यदि वृत्त $C_k$ की त्रिज्या $r_k$ है, तो $\sum_{\mathrm{k}=1}^{20} \frac{1}{\mathrm{r}_{\mathrm{k}}^2}$ का मान है :

  • [JEE MAIN 2023]